

Kinetics parameters for FeZnL-R and FeCuL-H										
Complex	р <i>К</i> а	Kass (L.mol-1)	E= k _{cal} /K _M (mol ⁻¹ ·L.s ⁻¹)	<i>k</i> _{cat} (s ⁻¹)	E _{1/2} mV vs NHE (pH 6.0)	k _{cal} /k _{unc}				
FeZnL-CH ₃	4.88	192	19 x 10 ⁻²	9.74 x 10 ⁻⁴	-197	5.2 x 10 ³				
FeZnL-H	4.66	238	20 x 10 ⁻²	9.13 x 10 ⁻⁴	-180	4.8 x 10 ³				
FeZnL_Br	4.50	168	11 x 10 ⁻²	6.55 x 10 ⁻⁴	-160	3.5 x 10 ³				
FeZnL-NO ₂	4.25	286	12 x 10 ⁻²	4.20 x 10 ⁻⁴	-100	2.2 x 10 ³				
FeCuL-H	5.23	117	85 x 10 ⁻²	19.0 x 10 ⁻⁴	-430	10.0 x 10 ³				
FeZnpy ₃ mfp	4.93	67	6 x 10 ⁻²	9.53 x 10 ⁻⁴	-252	5.1 x 10 ³				
S studies - i distance of	Kin n CH ₃ Cf 3.043 Å	v/H ₂ O so for FeZ	ope effect lution reve nL-H in ful	$k_{\rm H}/k_{\rm D} = 1$ al a Fe ^{II} Z l agreeme	1.00 – 1.34					

Complex	V ₀	K	k _{eat}	*K ₄₈	ьE	F	Turn over	
	(mol.L.s ⁻¹)	(mol/L)	(s-1)	(L/mol)	(L.s/mol)	(k _{cat} /k _{uncat})	(1h)	
NiNibppamff	5.37x10 ⁻⁷	1.57x10 ⁻³	5.4x10 ⁻²	637	34.2	298.300	33.4	
Si3AP-NiNi	9.20x10 ⁻⁷	7.30x10 ⁻⁴	3.5x10 ⁻²	1370	48.2	195.500	78.5	
Si3APTS-NiNi	3.40x10-7	6.9x10-4	4.6x10 ⁻²	1450	66	255.500	32.7	
Simag-NiNi	4.19x10 ⁻⁷	1.21x10 ⁻³	3.5x10 ⁻²	826	29	196.650	23	
^а К _{АБ} = 1/К _М . at pH 9.0 Si3AP – sili	$^{b}E = k_{ca}/K_{M}$ (cat	alytic efficiency).	1	Pio	ezan and Ne	eves.	
at pH 9.0 Si3AP – silica 3-aminopropyl Si3ATPS – silica 3-aminopropyl trietoxisilano					Piov Manu	Piovezan and Neves, Manuscript in Preparation		

